
The Code
Modernization
Playbook
Transforming Legacy Systems with AI

Contents

Modernize – or get left behind � 3

Three trends blocking digital transformation� 5

The rise of code modernization� 8

Real-world code modernization use cases� 11

The ROI of code modernization� 19

Choosing the right agentic coding solution� 21

Getting started with code modernization� 23

Resources & next steps � 27

2

Modernize – or get left behind
IT and engineering organizations are at a crossroads.

Maintain legacy systems or upgrade them. Keep the lights on for your COBOL-
powered mainframe or allocate precious engineering resources to migrating
your codebase to Python or Java. Stick with your battle-tested monolith or
embark on the complex journey of decomposing it into microservices.

With a never-ending list of new features to build and stakeholders to appease,
it can be nearly impossible to find the time or resources to future-proof your
codebase. But the decision not to re-architect your stack goes beyond the
maintenance cost of technical debt—it represents a fundamental threat to
your company’s competitive advantage.

You know code modernization is the way forward, but all too often the short-
term cost of delaying more pressing projects is too steep to pay.

The good news? You don’t have to choose between code modernization and
shipping your next great feature. Enter: agentic code modernization.

The case for agentic code modernization

Agentic code modernization transcends simple language migration; it
represents a fundamental transformation of how organizations build,

maintain and evolve their software systems.

Recent advances in agentic coding tools enable development teams to
tackle modernization projects that were previously deemed too complex,
risky, or resource-intensive. These solutions embed powerful coding models
directly into development workflows, providing deep codebase awareness
and the ability to securely edit files and run commands directly in existing
development environments.

The emergence of tools like Claude Code, which leverages advanced
coding models like Sonnet 4 and Opus 4.1, marks a paradigm shift in
how organizations approach legacy system transformation. These tools
understand context across entire codebases, preserve critical business logic
during migrations and generate comprehensive documentation where none
previously existed.

This playbook delivers actionable strategies for identifying high-ROI
modernization opportunities that align with strategic business objectives.
Technical leaders will discover how to build compelling business cases that
secure executive buy-in and funding by quantifying both the costs of inaction
and the value of transformation.

Let’s dive in.

3

Chapter 1

Three trends
blocking digital
transformation

4

Chapter 1

Three trends blocking
digital transformation
From cloud computing to generative AI, digital transformation has become
a critical imperative for organizations seeking to remain competitive in
today’s rapidly evolving technological landscape. However, despite significant
investments in the tools, platforms and talent to support these initiatives,
many IT and engineering organizations find themselves struggling to achieve
tangible ROI.

In this chapter, we examine three critical trends blocking digital
transformation–and what leaders can do about it.

Decreasing developer productivity

According to McKinsey, the average developer spends 17.3 hours each week
dealing with technical debt, bad code and maintenance tasks like debugging
and refactoring instead of building. This maintenance burden creates a
vicious cycle where innovation becomes nearly impossible, as teams find
themselves constantly fighting fires rather than shipping new features.
Developer burnout accelerates as talented engineers lose motivation working
on outdated systems that offer little opportunity for professional growth
or creative problem-solving. The psychological impact extends beyond
individual contributors to entire teams, creating a culture of resignation
where “that’s just how things work here” becomes the default response to
systemic inefficiencies.

Talent acquisition and retention

As software technology evolves at an exponential pace, expertise in older
systems becomes increasingly scarce, with fewer technical professionals
possessing proficiency in legacy programming languages and architectures.
Meanwhile, young developers graduating from computer science programs
have been trained on modern languages and cloud-native architectures,
making positions that require COBOL, Fortran or even older versions of Java
increasingly difficult to fill.

Despite the fact that COBOL is often considered a “dying” language, it was
estimated by the COBOL Working Group of the Open Mainframe Project in
2021 that there are 250 billion lines of COBOL in use at businesses worldwide.
Organizations find themselves competing for a shrinking pool of expensive
specialists to maintain these systems while simultaneously struggling to
attract new talent who view legacy system work as career-limiting rather than
career-enhancing.

Rising technical debt and security risks

According to a recent survey conducted by Protiviti, nearly 70% of
organizations cite technical debt as a primary inhibitor on their ability to
innovate. In specific industries, the numbers are much more stark, with 82%
of biotechnology and 78% of financial services organizations citing technical
debt as a blocker to new feature development.

5

Security vulnerabilities multiply as legacy systems no longer receive
patches or updates from vendors who have long since moved on to newer
technologies. Each unpatched vulnerability represents a potential entry point
for malicious actors, with legacy systems often lacking the monitoring and
security controls that modern architectures provide by default. Additionally,
compliance requirements continue to evolve while legacy systems remain
static, creating an ever-widening gap between what regulations demand and
what systems can deliver.

As a result of this debt, financial services organizations struggle to implement
real-time fraud detection on batch-processing systems, healthcare providers
cannot meet interoperability mandates with siloed databases and retailers
face customer data protection requirements that legacy architectures were
never designed to support. Organizations find themselves trapped between
the fear of change and the escalating risk of maintaining the status quo in an
environment of increasing cyber threats and regulatory scrutiny.

The root cause: legacy engineering practices

Across industries, decades-old architectural decisions continue to constrain
digital transformation initiatives. Documentation is often lost over time
through staff turnover and organizational changes, leaving critical business
logic trapped in code that few understand and even fewer can modify safely.
The original designers and implementers have often moved on, taking with
them the contextual knowledge that made these systems comprehensible.

As a result, organizations develop a culture of fear around touching “working”
systems, where the definition of “working” often means “we’re afraid to verify
if it actually works correctly.” This paralysis manifests in risk-averse behavior
where teams know change is necessary but fear the potential consequences of
attempting it, leading to a status quo that becomes increasingly untenable.

There has to be a better way.

6

Chapter 2

The rise of code
modernization

7

Chapter 2

The rise of code modernization
Let’s explore what code modernization actually means for the teams living
with legacy systems every day. It’s not about throwing away decades of
refined business logic—that would be wasteful and risky. Instead, it’s
about thoughtfully transforming how that logic lives and breathes in your
infrastructure.

You’ve probably seen “lift-and-shift” migrations that promise quick wins but
really just relocate problems to fancier real estate (and at a non insubstantial
cost). Real modernization goes deeper. It asks better questions: How can your
architecture evolve? What tools would help your team work better? Which
practices are holding you back?

The three pillars of code modernization

When teams successfully modernize their code, they tend to focus on three
interconnected changes: how systems are structured, what technologies
power them, and how people work with them. Here’s what we’ve learned:

Architecture transformation

Organizations undertaking architecture transformation must move from
monolithic, on-prem structures to microservices and cloud-native patterns
that provide flexibility and resilience. This architectural evolution enables
independent scaling and deployment of system components, allowing
teams to update customer-facing features without putting core transaction
processing systems at risk. Development teams can work autonomously
without the coordination overhead that monolithic systems require,
accelerating delivery while reducing the risk of conflicting changes.

System resilience improves dramatically through the isolation of potential

failures, where issues in one service no longer cascade throughout the entire
system. Modern architectures implement circuit breakers, retry logic and
graceful degradation patterns that maintain service availability even when
individual components fail. This architectural approach transforms brittle
systems that require complete downtime for updates into antifragile systems
that grow stronger through controlled failure and continuous improvement.

Technology stack modernization

To achieve code modernization, outdated languages and frameworks must
give way to modern alternatives that support current development practices
and attract top talent. New technologies bring immediate benefits in terms
of performance, security and developer productivity. Modern runtime
environments provide performance improvements that come naturally, with
garbage collection, just-in-time compilation and hardware optimization that
legacy systems cannot match. Security vulnerabilities decrease significantly
with actively maintained technologies that receive regular updates and
patches.

The ecosystem advantages of modern technology stacks extend far beyond
the core language or framework. Rich libraries, comprehensive tooling and
active communities accelerate development while reducing the need to build
custom solutions for common problems. Organizations transitioning from
COBOL to Java gain access to thousands of open-source libraries, while those
moving from proprietary systems to Python unlock powerful data science and
machine learning capabilities that can transform business operations.

Development practice evolution

Legacy waterfall methodologies must transform into continuous integration

8

and continuous deployment (CI/CD) pipelines with automated testing
that catches issues before they reach production. Deployment frequency
increases from monthly or quarterly releases to multiple deployments per day,
enabling organizations to respond rapidly to market changes and customer
feedback. Quality improves through comprehensive automated testing that
validates not just functionality but also performance, security and compliance
requirements.

Time-to-market accelerates dramatically with modern practices that
eliminate manual handoffs and reduce coordination overhead. Infrastructure
as Code (IaC) ensures consistent environments from development through
production, while GitOps practices provide auditable, reversible changes
to both code and infrastructure. These practices create a foundation for
innovation where experimentation becomes safe and failure becomes a
learning opportunity rather than a crisis.

Industries ripe for disruption

Several sectors remain heavily dependent on legacy systems, creating
opportunities for innovative competitors to capture market share by offering
superior digital experiences and operational efficiency.

Financial services

The financial services industry illustrates the acute challenges imposed by
legacy system constraints. Many banks continue to rely on massive COBOL
codebases processing trillions in daily transactions, yet these systems struggle
to support the real-time processing capabilities that modern customers
have come to expect. Running on mainframes that often cost millions just
to maintain, these legacy architectures limit banks’ ability to offer instant
payments, real-time fraud detection, and the personalized services that
digital-native competitors provide as standard features. The reliance on
overnight batch processing creates frustrating delays for customers who
experience instant gratification in other aspects of their digital lives.

Healthcare and pharma
The healthcare and pharmaceutical industries face particular challenges

with aging drug development and clinical trial infrastructure. At a time when
speed to market can influence both patient outcomes and revenue potential
measured in billions, many organizations find their legacy systems may
be limiting their competitive capabilities. Statistical computing systems
running SAS or proprietary languages often lack the flexibility to incorporate
modern AI/ML capabilities that could potentially accelerate drug candidate
identification or improve trial outcome predictions. Researchers frequently
encounter constraints that reflect outdated technical limitations, such as
batch processing requirements for genomic data that contemporary systems

can handle in real-time.

Retail

The retail industry’s technological evolution highlights the tension between
legacy infrastructure and modern customer expectations. Many retailers
continue operating inventory systems developed decades ago, which can
create challenges in today’s omnichannel environment where customers
expect seamless experiences across online, mobile and physical stores. When
point-of-sale systems only update inventory through nightly batch processes,
supporting services like buy-online-pickup-in-store becomes problematic, as
does providing the real-time inventory visibility that could prevent customers
from making unnecessary trips to find out-of-stock items. The influence of
Amazon and other digital-native retailers has shaped customer expectations
around real-time visibility and channel integration that legacy systems often
struggle to meet.

Manufacturing

Proprietary automation code in manufacturing creates vendor lock-in
that prevents Industry 4.0 adoption and smart factory initiatives. Legacy
systems designed for isolated production lines cannot integrate with modern
enterprise planning and optimization tools that could reduce waste and
improve efficiency. The inability to collect and analyze real-time production
data prevents manufacturers from implementing predictive maintenance that
could prevent costly downtime.

9

Chapter 3

Real-world code
modernization use
cases

10

Chapter 3

Real-world code modernization use cases
Code modernization removes the technical barriers that prevent organizations
from implementing innovative customer experiences and operational
improvements. Here are five real-world use cases teams can apply today with
agentic coding tools like Claude Code.

Language migration

Organizations using agentic coding tools can successfully navigate complex
language migrations that preserve business logic while gaining modern
language benefits. For example:

•	 Banking institutions can easily migrate from COBOL to Java for transaction
processing systems, enabling cloud deployment.

•	 VB6 applications can transform into C#/.NET implementations that support
web interfaces.

•	 Data processing pipelines can evolve from Perl scripts to Python
frameworks that integrate seamlessly with modern data science tools.

Sample Scenario: An insurance company used Claude Code to migrate their
COBOL-based claims processing system to Java. The team began by having
Claude analyze their existing architecture. Claude created detailed diagrams
that revealed hidden dependencies and business logic. The migration
preserved all original business rules while adding modern capabilities
like dependency injection, transaction management and real-time event
streaming.

COBOL

* Original COBOL Claims Processing
IDENTIFICATION DIVISION.
PROGRAM-ID. PROCESS-CLAIM.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-CLAIM-RECORD.
05 WS-CLAIM-ID PIC 9(8).
05 WS-POLICY-NUMBER PIC X(10).
05 WS-CLAIM-AMOUNT PIC 9(7)V99.
05 WS-DEDUCTIBLE PIC 9(5)V99.
05 WS-COVERAGE-LIMIT PIC 9(7)V99.
05 WS-APPROVAL-STATUS PIC X(1).
88 APPROVED VALUE ‘A’.
88 DENIED VALUE ‘D’.
88 PENDING VALUE ‘P’.

11

Translation to Java, facilitated by Claude Code:

Java

// Migrated Java implementation with modern patterns
@Service
@Transactional
public class ClaimProcessingService {

@Data
@Builder
public static class ClaimRecord {
private Long claimId;
private String policyNumber;
private BigDecimal claimAmount;
private BigDecimal deductible;
private BigDecimal coverageLimit;
private ClaimStatus approvalStatus;

}

public ClaimRecord processClaim(ClaimRecord claim) {
// Preserved business logic with enhanced error handling

validateClaim(claim);
calculatePayout(claim);
updateClaimStatus(claim);

// Modern additions: async processing, event publishing
publishClaimEvent(claim);
return claimRepository.save(claim);

}
}

12

Platform modernization

Agentic coding solutions enable teams to transform legacy platforms into
modern, scalable architectures. For example:

•	 Mainframe batch jobs convert to serverless functions that scale
automatically based on demand.

•	 On-premise systems migrate to Kubernetes clusters that provide resilience
through container orchestration.

Sample Scenario: A retail chain utilized Claude Code to convert their
mainframe inventory batch processing system to AWS Lambda functions.
By prompting Claude Code with “Convert the batch job in /inventory/daily_
reconciliation to a serverless function written in Python3,” they transformed
overnight processing into real-time updates. The transformation eliminated
the 24-hour delay in inventory updates and enabled real-time stock checks
across stores.

Job Control Language

//INVRECON JOB (ACCT),’DAILYINVENTORY’,CLASS=A,
MSGCLASS=X
//STEP1 EXEC PGM=INVPRC01
//STEPLIB DD DSN=PROD.LOADLIB,DISP=SHR
//INVSALES DD DSN=PROD.DAILY.SALES,DISP=SHR
//INVMAST DD DSN=PROD.INVENTORY.MASTER,DISP=OLD

Modernization from an IBM mainframe batch processing system to a severless
function written in Python3:

Python

Converted AWS Lambda Function - Real-time inventory processing
import json
import boto3
from decimal import Decimal
def lambda_handler(event, context):
“””Process inventory changes in real-time as they occur”””
try:
for record in event[‘Records’]:
transaction = json.loads(record[‘body’])

Real-time inventory update with DynamoDB
response = inventory_table.update_item(
Key={
‘store_id’: transaction[‘store_id’],
‘product_id’: transaction[‘product_id’]

},
UpdateExpression=”SET qty_on_hand = qty_on_hand + :qty_
change”,
ExpressionAttributeValues={
‘:qty_change’: Decimal(str(transaction[‘quantity_
change’]))

}
)

Real-time reorder alerts (no more waiting for nightly
batch)
if response[‘Attributes’][‘qty_on_hand’] <=
response[‘Attributes’][‘reorder_point’]:

send_reorder_alert(response[‘Attributes’])

except Exception as e:
logger.error(f”Error processing inventory: {str(e)}”)
raise

13

Architecture transformation

Modern development teams use agentic coding solutions to break up
monolithic applications into microservices that can be developed, deployed
and scaled independently. This architectural transformation requires
careful analysis of existing code to identify service boundaries, shared data
dependencies and transaction boundaries.

Sample Scenario: A financial services firm used Claude Code to decompose
their monolithic trading system into microservices. Claude Code analyzed
millions of lines of code to identify natural service boundaries around order
management, risk calculation and settlement processing. The decomposition
enabled independent deployment of services, automatic scaling based on
load patterns and fault isolation where settlement failures don’t impact order
placement.

Java

// Original Monolithic Trading System
@Component
public class TradingSystemMonolith {
@Transactional
public TradeResult executeTrade(TradeRequest request) {
// Order validation mixed with risk checks
if (!validateOrder(request)) {
return TradeResult.rejected(“Invalid order”);

}

// Risk calculation embedded in order flow
RiskMetrics risk = calculateRisk(request, currentPosition);
if (risk.getVaR() > getAccountLimit(request.
getAccountId())) {
return TradeResult.rejected(“Risk limit exceeded”);

}

// Settlement logic intertwined with order execution
Order order = new Order(request);
db.insert(“INSERT INTO orders VALUES (?)”, order);

// Synchronous settlement causing bottlenecks
Settlement settlement = settlementProcessor.process(order);

return TradeResult.success(order.getId());

}
}

14

Decomposition from monolith to microservices:

Java

// Decomposed Order Management Microservice
@RestController
@RequestMapping(“/api/v1/orders”)
public class OrderService {

@PostMapping
@CircuitBreaker(name = “order-creation”)
public ResponseEntity<OrderResponse> createOrder(@RequestBody
OrderRequest request) {
// Focused solely on order management
Order order = Order.builder()
.accountId(request.getAccountId())
.symbol(request.getSymbol())
.quantity(request.getQuantity())
.status(OrderStatus.PENDING_RISK_CHECK)
.build();

order = orderRepository.save(order);

// Asynchronous event-driven communication
eventPublisher.publish(new OrderCreatedEvent(order));

return ResponseEntity.accepted().body(OrderResponse.
from(order));

}
}

// Risk Calculation Microservice
@Service
public class RiskService {
@EventListener

@Async
public void handleOrderCreated(OrderCreatedEvent event) {
// Independent risk calculation with its own data store
RiskAssessment assessment = performRiskAssessment(event.
getOrder());

if (assessment.isApproved()) {
publishEvent(new RiskApprovedEvent(event.getOrderId(),
assessment));

} else {
publishEvent(new RiskRejectedEvent(event.getOrderId(),
assessment));

}
}

}

15

Integration modernization

Legacy integration patterns create significant maintenance burdens.
Point-to-point integrations evolve into complex webs of dependencies,
while file transfer protocols struggle to meet real-time requirements.
Modern integration architectures consolidate these into managed API
gateways that provide centralized security, monitoring and version
management.

Sample Scenario: A logistics company transformed their FTP-based partner
integration system to a modern REST API platform using Claude Code.
Through prompts like “Convert this FTP-based file exchange protocol to a
REST API design that supports real-time updates,” they reduced integration
errors by 90%. The transformation delivered a reduction in integration errors
through structured validation, real-time tracking via WebSocket connections
instead of FTP delays, and backward compatibility maintained with CSV batch
upload endpoint.

Bash

Original FTP-based Integration
#!/bin/bash
Partners upload CSV files to FTP every 4 hours
ftp -inv $FTP_SERVER << EOF
user $FTP_USER $FTP_PASS
cd /inbound
mget PARTNER_SHIPMENT_*.csv
bye
EOF

Process each file sequentially
for file in PARTNER_SHIPMENT_*.csv; do
./process_shipment.pl $file # No error handling
mv $file ./processed/

done

16

} catch (error) {
this.handleError(error, res);

}
}

);

// Backward compatibility endpoint
this.router.post(‘/api/v2/shipments/batch’,
this.authenticate,
upload.single(‘file’),
async (req: Request, res: Response) => {
// Support legacy CSV format while providing modern API
benefits
const shipments = req.body.format === ‘csv’
? await this.parseCSVFile(req.file)
: JSON.parse(req.file.buffer.toString());

const results = await Promise.allSettled(
shipments.map(s => this.createShipment(s, req.
partner))

);

res.status(207).json({
total: results.length,
successful: results.filter(r => r.status ===
‘fulfilled’).length,
failed: results.filter(r => r.status === ‘rejected’).
length

});
}

);
}

}

Typescript

// Modern REST API Implementation
export class ShipmentAPIRouter {
private setupRoutes() {
// Real-time shipment creation with validation
this.router.post(‘/api/v2/shipments’,
this.authenticate,
this.validateRequest(ShipmentSchema),
this.rateLimit,
async (req: Request, res: Response) => {
try {
const shipment = await this.createShipment(req.body,
req.partner);

res.status(201).json({
id: shipment.id,
status: ‘CREATED’,
trackingUrl: `https://track.logistics.com/${shipment.
id}`,
_links: {
self: `/api/v2/shipments/${shipment.id}`,
events: `/api/v2/shipments/${shipment.id}/events`

}
});

// Real-time notifications
this.eventBus.broadcast(shipment.id, {
type: ‘SHIPMENT_CREATED’,
timestamp: new Date().toISOString(),
data: shipment

});

Transformation from legacy integration system written in Bash to REST API
design written in Typescript:

17

Chapter 4

The ROI of code
modernization

18

Chapter 4

The ROI of code modernization
While the costs of modernization are often front-loaded and visible, the
returns manifest across multiple dimensions that compound over time,
including increased speed and scale of development, risk reduction, improved
knowledge preservation and financial gains.

Speed and scale

Development teams experience dramatic acceleration in feature delivery
when freed from the constraints of legacy systems. Multi-month projects
compress to weeks through the elimination of technical barriers that
previously required specialized knowledge and careful orchestration. By
leveraging modern programming languages, frameworks and architectures,
organizations create applications that handle increased workloads more
efficiently than their legacy counterparts, often with fewer resources and
lower operational costs.

Risk reduction

Modern systems incorporate current security practices and receive regular
updates from active vendor and open source communities. The incorporation
of latest security practices and technologies better protects sensitive data and
customer information from increasingly sophisticated cyber threats. High-
availability architectures eliminate single points of failure that plague legacy
systems, where a single component failure could bring down entire business
operations for hours or days.

Knowledge preservation

Claude Code and other agentic coding tools can generate documentation with
the run of a single command or text prompt, providing new developers with
the context they need to understand and maintain systems effectively. Using
Claude Code, teams can extract institutional knowledge from your legacy
codebase, create understandable documentation and then facilitate migration
and Q&A through robust test suites. This process prevents the cycle from
repeating, ensuring that codebases and the critical systems powered by them
can easily migrate to more modern architectures.

Financial impact

Most significantly, code modernization can translate to financial gains.
A recent Deloitte study suggests that companies who embrace digital
transformation initiatives like code modernization have a 14% higher market
value than those that don’t, while the Harvard Business Review argues that
modern architectures increase company valuations by reducing technical
risks. By reducing operational expenses through decreased maintenance
costs and reduced need for specialized expertise, teams that embrace code
modernization can spend more resources innovating.

19

Chapter 5

Choosing the right
agentic coding
solution

20

Chapter 5

Choosing the right agentic coding solution
When evaluating agentic coding solutions for code modernization,
organizations must assess critical capabilities that determine whether a tool
can handle the complexity of real-world legacy systems.

Deep codebase awareness

Effective agentic coding tools demonstrate the ability to understand and
navigate complex codebases without requiring extensive manual setup.
These tools should run multi-file tasks using deep codebase awareness that
automatically understands project structures, dependencies and architectural
patterns, enabling consistent changes across entire codebases. Advanced
tools like Claude Code can trace execution paths through multiple files and
frameworks, understanding how changes propagate through systems and
identifying potential impacts before they become problems.

Working with all your tools

Agentic coding solutions must integrate seamlessly with existing
development workflows and toolchains. Version control systems, testing
frameworks, build tools and deployment pipelines should work naturally
with AI assistance, requiring no changes to established processes. Integration
extends beyond development tools to encompass the entire software delivery
lifecycle, connecting with project management systems, testing platforms and
monitoring systems to ensure AI assistance enhances rather than disrupts
existing workflows.

Running anywhere: flexible deployment

Enterprise development teams require flexibility in deployment options. Tools
must operate effectively in terminals, integrate with IDEs or run as headless

CLI tools for automation scenarios. Solutions like Claude Code provide
integration with popular development environments including Visual Studio
Code, JetBrains IDEs and Neovim. Cloud-based and local deployment options
ensure that all organizations can benefit from AI assistance regardless of their
security posture or infrastructure constraints.

Secure by design

Enterprise-grade security ensures that code and queries go directly to AI
models via encrypted APIs without passing through intermediary servers.
Tools demonstrate their work transparently, showing planned changes
and requesting approval before modifying code. Comprehensive audit
trails and role-based access controls maintain governance and compliance
requirements. Integration with secure cloud enterprise AI deployments,
including Amazon Bedrock and Google Vertex AI, provides flexibility while
maintaining security standards.

Advanced features

Effective agentic coding solutions comprise three essential technical
components: memory systems for maintaining context across long-running
projects, function capabilities for executing complex transformations and
the ability to connect to many tools through open standards like the Model
Context Protocol (MCP). These components work synergistically to ensure
successful modernization outcomes.

21

Chapter 6

Getting started
with code
modernization

22

Chapter 6

Getting started with code modernization
Successful code modernization requires more than technical expertise—
it demands strategic planning and honest assessment of organizational
capabilities. Before embarking on transformation initiatives, organizations
must understand their current state, available resources and potential
roadblocks to ensure modernization efforts deliver meaningful business value
rather than creating additional technical debt.

Assessing organizational readiness

Organizations considering code modernization should evaluate their current
situation across several key dimensions to determine if the investment will
deliver sufficient value. As a general rule of thumb, teams spending more
than 40% of their time on maintenance activities rather than new feature
development face a clear indicator that modernization could dramatically
improve productivity. The challenge of hiring and onboarding engineers for
legacy technologies provides another signal—when recruiting takes months
and new hires require extensive training on obsolete languages, the cost of
maintaining status quo often exceeds modernization investment.

Choosing the right implementation approach

Organizations beginning their modernization journey should first assess their
testing and validation capabilities. Those with comprehensive unit tests or

evaluation suites can validate that modernized code maintains functional
equivalence with legacy systems. Teams without existing tests should identify
critical modules and work with domain experts (we recommend a professional
services partner) to build test suites using AI assistance before attempting
migration. Claude Code can accelerate test creation by analyzing existing code
to understand expected behaviors and edge cases.

Development teams might also begin by refactoring non-critical modules
or migrating systems with fewer dependencies to build confidence and
experience. This iterative approach allows organizations to learn and refine
their modernization practices before tackling core business systems. Success
in early projects builds organizational support and provides concrete
examples of value delivery that justify larger investments.

Building momentum through phases

The journey from initial pilot to enterprise-wide transformation typically
follows a predictable pattern that organizations can plan around. This phased
approach allows teams to build confidence and expertise while minimizing
risk. See below for an example:

23

Timeline Phase and activities

Weeks 1-2 Focus on identifying a low-risk, high-visibility legacy system that can demonstrate modernization value while building
organizational confidence. Target systems like batch reporting modules, standalone calculation engines or peripheral
integration services—complex enough to showcase AI capabilities but isolated enough that issues won’t impact core operations.

During this phase, conduct code archaeology: analyze COBOL/mainframe job flows, map data dependencies and document
business rules embedded in old subroutines.

Weeks 3-4 Deploy Claude Code to analyze legacy code and demonstrate modernization potential. AI agents read through COBOL
programs, JCL scripts and VSAM file definitions, extracting business logic and documenting hidden dependencies.

Generate initial code translations to Java or Python, create data flow diagrams and identify technical debt patterns.

Build a proof of concept that modernizes a critical subroutine or batch job, showing side-by-side execution with identical
outputs.

This phase reveals complexities like implicit date handling, packed decimal conversions and undocumented business rules—
providing crucial insights for production migration.

Weeks 5-8 Complete the first full system migration from mainframe to cloud. AI agents handle code translation while preserving exact
business logic, generate comprehensive test suites covering edge cases found in production data, create API wrappers for
gradual transition and produce documentation explaining every transformation decision.

Implement parallel run capabilities where modernized code operates alongside legacy systems, comparing outputs for
validation.

Address challenges like EBCDIC to ASCII conversions, hierarchical to relational data transformations and CICS transaction
reimplementation. By week 8, achieve production cutover with the legacy system decommissioned.

Month 3+ Expand modernization efforts based on proven patterns.

Teams tackle increasingly complex systems—i.e. core banking engines, real-time trading platforms, integrated policy
management systems.

AI agents now work with accumulated knowledge: reusing proven conversion patterns, identifying common anti-patterns before
they cause issues and suggesting architectural improvements beyond mere translation.

Establish a modernization factory approach: parallel teams working on different systems, shared libraries of conversion
utilities, automated testing frameworks and continuous knowledge capture.

24

Treating AI like a thought partner

Modern AI tools excel when engaged as thought partners in architectural
discussions that go beyond simple code generation. Agentic coding tools like
Claude Code demonstrate particular strength in teaching concepts, debugging
complex issues, and supporting long-form thinking about system design.
Rather than simply generating code, these tools walk developers through
the reasoning behind architectural decisions, helping teams understand not
just what changes to make but why those changes improve the system. They
enable newer developers to architect systems and perform modernizations
without have an expert-level understanding of the codebase, allowing all team
members to meaningfully contribute.

As teams work with agentic coding tools like Claude Code, they also benefit
from automatic edge case discovery and test generation that improve
quality while reducing manual burden. The ability to quickly explore design
alternatives helps teams make better architectural decisions by evaluating
multiple approaches and understanding their trade-offs before committing to
implementation.

The modernization maturity model

Organizations typically progress through four distinct levels of modernization
maturity, each building capabilities for more sophisticated approaches.
Understanding these maturity levels helps organizations assess their current
state and chart a path toward more effective modernization practices. Each
level builds on the previous, creating a pathway for organizations to evolve
their modernization capabilities over time. See below for an example:

25

Maturity level Characteristics

Ad hoc Legacy systems addressed only during failures—retiring COBOL programmers, dying mainframes or regulatory deadlines.

Teams scramble to decode undocumented code and patch 30-year-old systems.

No documentation, test suites or transition plans exist. Knowledge lives solely in retiring experts’ heads.

Technical debt compounds as teams add workarounds to avoid touching core legacy code.

Planned Annual projects target specific systems, though selection reflects politics over business value.

Teams plan COBOL-to-Java conversions with budgets and timelines, but efforts remain siloed—each project reinvents the
wheel.

Basic legacy inventories exist (lines of code, age, criticality) without sophisticated ROI analysis.

Some automated conversion tools help, but humans still manually verify most translations.

Systematic Dedicated teams follow standardized processes with clear metrics.

Living inventories track technical debt scores and modernization readiness.

AI tools continuously analyze legacy code, documenting business rules and suggesting refactoring.

Established playbooks guide common patterns: i.e. batch-to-streaming, monolith decomposition. Automated testing ensures
compatibility.

Every COBOL subroutine documented, every dependency mapped.

Optimized AI agents proactively scan systems and generate modernization proposals with ROI analysis.

Claude reads COBOL, understands intent and automatically creates cloud-native microservices with full test coverage.

Continuous background modernization: i.e. removing dead code, optimizing queries, refactoring to modern frameworks.

When regulations change, AI automatically generates compliance updates.

Humans focus on strategy while AI handles routine transformations.

26

Resources & next steps
Technical leaders ready to begin their modernization journey can access
comprehensive resources and support through the following resources:

Detailed information about Claude Code and its capabilities for code
modernization.

Technical documentation covering implementation patterns, best practices
and integration guides.

How Anthropic teams use Claude Code provides insights into how Anthropic
employees across functions use Claude Code to refactor code, debug systems
and other critical engineering tasks.

With agentic coding tools at your fingertips, transforming legacy codebases
from technical debt into your strategic advantage has never been more
achievable.

Reach out to Anthropic’s Sales team to learn more.

27

